首页> 外文OA文献 >Quantification of uncertainty in aerosol optical thickness retrieval arising from aerosol microphysical model and other sources, applied to Ozone Monitoring Instrument (OMI) measurements
【2h】

Quantification of uncertainty in aerosol optical thickness retrieval arising from aerosol microphysical model and other sources, applied to Ozone Monitoring Instrument (OMI) measurements

机译:量化由气溶胶微物理模型和其他来源引起的气溶胶光学厚度恢复中的不确定性,应用于臭氧监测仪(OMI)测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Satellite instruments are nowadays successfully utilised for measuring atmospheric aerosol in many applications as well as in research. Therefore, there is a growing need for rigorous error characterisation of the measurements. Here, we introduce a methodology for quantifying the uncertainty in the retrieval of aerosol optical thickness (AOT). In particular, we concentrate on two aspects: uncertainty due to aerosol microphysical model selection and uncertainty due to imperfect forward modelling. We apply the introduced methodology for aerosol optical thickness retrieval of the Ozone Monitoring Instrument (OMI) on board NASA’s Earth Observing System (EOS) Aura satellite, launched in 2004. We apply statistical methodologies that improve the uncertainty estimates of the aerosol optical thickness retrieval by propagating aerosol microphysical model selection and forward model error more realistically. For the microphysical model selection problem, we utilise Bayesian model selection and model averaging methods. Gaussian processes are utilised to characterise the smooth systematic discrepancies between the measured and modelled reflectances (i.e. residuals). The spectral correlation is composed empirically by exploring a set of residuals. The operational OMI multiwavelength aerosol retrieval algorithm OMAERO is used for cloud-free, over-land pixels of the OMI instrument with the additional Bayesian model selection and model discrepancy techniques introduced here. The method and improved uncertainty characterisation is demonstrated by several examples with different aerosol properties: weakly absorbing aerosols, forest fires over Greece and Russia, and Sahara desert dust. The statistical methodology presented is general; it is not restricted to this particular satellite retrieval application.
机译:如今,卫星仪器已成功用于许多应用以及研究中的大气气溶胶测量。因此,越来越需要对测量进行严格的误差表征。在这里,我们介绍了一种用于量化气溶胶光学厚度(AOT)检索不确定性的方法。特别地,我们集中在两个方面:由于气溶胶微物理模型选择而引起的不确定性和由于不完善的正向建模而引起的不确定性。我们将引入的方法用于2004年发射的NASA的地球观测系统(EOS)Aura卫星上的臭氧监测仪器(OMI)的气溶胶光学厚度反演。我们采用的统计方法可通过以下方法改进气溶胶光学厚度反演的不确定性估计:传播气溶胶的微观物理模型选择和更实际地向前模型误差。对于微观物理模型选择问题,我们利用贝叶斯模型选择和模型平均方法。利用高斯过程来表征测得的反射率和建模反射率(即残差)之间的平滑系统差异。频谱相关性是通过探索一组残差以经验方式组成的。可操作的OMI多波长气溶胶检索算法OMAERO用于OMI仪器的无云,陆上像素,并在此引入了其他贝叶斯模型选择和模型差异技术。几个具有不同气溶胶特性的示例证明了该方法和改进的不确定性表征:弱吸收气溶胶,希腊和俄罗斯上空的森林大火以及撒哈拉沙漠尘埃。所提供的统计方法是通用的;它不限于该特定的卫星检索应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号